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The validity of using the microscopic hyperbolic heat conduction model under a
harmonic fluctuating boundary heating source is investigated. It is found that
using the microscopic hyperbolic heat conduction model is essential when
w̄Cl

G > 0.1. The phase shift between the electron-gas and solid-lattice temperatures
is found to be tan−1(w̄Cl

G ). This phase shift reaches a fixed value of 1.5708 rad at
very large values of w̄Cl

G . It is found that the use of the microscopic hyperbolic
heat conduction model is essential when w̄ > 1 × 109 rad · s−1 for most metallic
layers independent of their thickness.

KEY WORDS: hyperbolic microscopic model; hyperbolic two-step heat con-
duction model; macroscopic heat conduction; microscopic heat conduction;
two-step heat conduction model.

1. INTRODUCTION

Energy transport during high-rate heating of thin metal films is a rapidly
emerging area in heat transfer [1–15]. When a thin film is exposed to a
very rapid heating process, such as that induced by a short-pulse laser, the
typical response time for the film is on the order of picoseconds, which is
comparable to the phonon-electron thermal relaxation time. Under these
conditions, thermal equilibrium between the solid lattice and electron gas
cannot be assumed and heat transfer in the electron gas and the metal
lattice needs to be considered separately. Models describing the nonequi-
librium thermal behavior in such cases are called the microscopic two-step
models. Two microscopic heat conduction models are available in the



literature. The first one is the parabolic two-step model [1–5, 8–10] and
the second one is the hyperbolic two-step model [1, 3, 7, 11].

Ultrafast heating of metals consists of two major steps of energy
transfer that occur simultaneously. In the first step, electrons absorb most
of the incident radiation energy and the excited electron gas transmits its
energy to the lattice through the inelastic electron-phonon scattering
process [1, 3]. In the second step, the incident radiation absorbed by the
metal film diffuses spatially within the film mainly by the electron gas.
For typical metals, depending on the degree of electron-phonon coupling,
it takes about 0.1 to 1 ps for electrons and lattice to reach thermal equilib-
rium. When the ultrafast heating pulse duration is comparable with or less than
this thermalization time, electrons and lattice are not in thermal equilibrium.

In the literature, numerous studies have been conducted using the
microscopic hyperbolic heat conduction model [1, 3, 7, 11]. These studies
show that the use of this model is a necessity in applications involving very
thin films and very short duration heating sources. In the present work, we
intend to investigate the thermal behavior of metal films under the effect of
a harmonic fluctuating heating source applied at the film boundary and as
described by the hyperbolic microscopic heat conduction model. The
heating source will heat the electron gas, which in turn exchanges part of
its energy with the solid lattice. In applications involving heating sources
with very high frequency, there is not enough time available for the elec-
tron gas and solid lattice to attain the same temperature. The goal of the
present work is to investigate the conditions under which the use of the
microscopic hyperbolic heat conduction model is a necessity.

2. ANALYSIS

Consider a plate of thickness 2L where the boundaries of the plate are
subjected to an imposed temperature that fluctuates in a harmonic manner
and the origin of the x-axis is attached at the plate center. The frequency of
fluctuations is very high so that the use of the microscopic heat conduction
model becomes important. The governing equations describing the film
thermal behaviour under these conditions are given as [1]

Ce
“Te

“t
=−

“q
“x

− G(Te − Tl) (1)

Cl
“Tl

“t
=G(Te − Tl) (2)

yF
“q
“t

+ke
“Te

“x
+q=0 (3)
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The boundary conditions are given as

“Te

“x
(t, 0)=0, Te(t, L)=To(1+e sin w̄t) (4)

where e and w̄ are, respectively, the amplitude and angular velocity of the
fluctuating temperature imposed on the boundaries.

Now using the dimensionless parameters defined in the nomenclature,
Eqs. (1) to (4) are reduced to

“he

“g
=−

“Q
“z

− A(he − hL) (5)

“hl

“g
=ACR(he − hl) (6)

“Q
“g

+B
“he

“z
+Q=0 (7)

“he

“z
(g, 0)=0, he(g, 1)=e sin wg=e Im{e iwg} (8)

where Im refers to ‘‘the imaginary part of’’ and i is the imaginary number
` − 1. Also,

A=
GyF

Ce
, B=

keyF

L2Ce
, CR=

Ce

Cl

Q=
qyF

LCeTo
, w=w̄yF

Equations (5) to (8) assume solutions in the form:

he(g, z)=Im{We(z) e iwg}

hl(g, z)=Im{Wl(z) e iwg}

Q(g, z)=Im{E(z) e iwg}

(9)

Substitution of Eq. (9) into Eqs. (5) to (8) yields

iwWe=−
dE
dz

− A(We − Wl) (10)

iwWl=ACR(We − Wl) (11)
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iwE+B
dWe

dz
+E=0 (12)

dWe

dz
(0)=0, We(1)=e (13)

Equations (10) to (13) are decoupled and solved to yield

We(z)=e
cosh lz

cosh l
(14)

Wl(z)=Me
cosh lz

cosh l
(15)

E(z)=−
Be

1+iw
l

sinh lz

cosh l
(16)

with

M=
CRA

iw+CRA
(17)

and

l==(1+iw)
B

(A+iw − AM)

Equation (17) may be rewritten as

M=
CRA

`w2+C2
RA2

e−id (18)

with

d=tan−1 1 w

CRA
2 (19)

where d represents the phase shift between electron-gas and solid-lattice
temperatures.

A comparison between Eqs. (14) and (15) reveals that the use of the
macroscopic hyperbolic heat conduction model is possible if

M % 1 (20)
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It will be assumed that if condition in Eq. (20) is satisfied within a 1%
deviation, then the macroscopic hyperbolic heat conduction model is
satisfied. In this case, Te % Tl % T and Eqs. (1) to (3) become

(Ce+Cl)
“T
“t

=−
“q
“x

(21)

y
“q
“t

+k
“Te

“x
+q=0 (22)

which is the classical macroscopic hyperbolic heat conduction model. If the
deviation in Eq. (20) is more than 1%, then the use of the microscopic
hyperbolic heat conduction model is essential. To validate the usage of the
macroscopic hyperbolic heat conduction model in layers exposed to a
harmonic fluctuating boundary heating source, Eqs. (18)–(20) imply that,
with less than 1% deviation between the macroscopic and the microscopic
models, then

w

CRA
< 0.1 (23)

In terms of the dimensional properties, Eq. (23) is rewritten as

w̄Cl

G
< 0.1 (24)

The criterion in Eq. (24) implies that the macroscopic hyperbolic heat
conduction model under the effect of a fluctuating boundary heating
source may be used in applications having small frequencies w̄, small lattice
thermal capacity Cl, and large coupling factors G.

Fluctuating heating sources with small frequencies gives the electron
gas enough time to transmit its high energy to the solid lattice. Small lattice
thermal capacity implies that solid lattice needs small energy to attain the
same temperature as the electron gas and, this in turn, shortens the time
required by both the lattice and the electron to attain the thermal equilib-
rium state. Large coupling factor G enhances the energy exchange process
between the electron gas and solid lattice, and this also shortens the time
required by both to attain the thermal equilibrium state.

The criterion in Eq. (24) reveals that other slab properties such as the
film thickness L, relaxation time yF, electron-gas thermal conductivity ke,
and electron-gas thermal capacity Ce do not play any role in controlling the
state of thermal equilibrium or the necessity of transition from the macro-
scopic model to the microscopic one.
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Table I. Angular Frequencies Beyond
Which The Use of The Microscopic Model

Is Essential

Metal w̄ \ (rad · s−1)

Cu 1.4 × 109

Ag 1.12 × 109

Pb 8.27 × 109

Table I shows the ranges of angular frequency w̄ beyond which the use
of the microscopic heat conduction model is essential in metallic slabs
made of different metals.

3. RESULTS AND DISCUSSION

Figures 1 to 4 show the spatial and temporal temperature distributions
for the electron gas and the solid lattice, respectively, while Figs. 5 and 6
show the heat flux spatial and temporal distributions. It is clear from these
figures that fluctuations in temperature and heat flux disappear as we move
far from the boundary. This implies that there is a limited thermal pene-
tration depth for the fluctuating boundary-heating source. Comparing
Figs. 1 and 2 with 3 and 4 reveals that the boundary thermal effect has a
thicker thermal penetration depth in the electron gas than in the solid
lattice. This penetration depth depends on the intensity of the boundary
heating source, measured by e in this case, and on the slab thermal proper-
ties combined by the dimensionless groups CR, A, and w. Also, Figs. 1 to 6

Fig. 1. Spatial and transient electron-gas temperature
distribution for Cu (A=0.06857, B=0.000551, w=
0.00001).
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Fig. 2. Spatial and transient electron-gas temperature
distribution for Cu (A=0.06857, B=0.000551, w=
0.001).

Fig. 3. Spatial and transient solid-lattice temperature
distribution for Cu (A=0.06857, B=0.000551, w=
0.00001).

Fig. 4. Spatial and transient solid-lattice temperature dis-
tribution for Cu (A=0.06857, B=0.000551, w=0.001).
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Fig. 5. Spatial and transient dimensionless heat flux dis-
tribution for Cu (A=0.06857, B=0.000551, w=0.00001).

show that the thermal penetration depth increases as w decreases. This is
due to the fact that the total energy transmitted from the fluctuating
heating source to the plate decreases as the frequency of the fluctuating
boundary heating source increases. As the frequency of the heating source
increases, locations far away from the boundary do not have enough time
to feel the variation in the thermal disturbances created at the boundary.

Figures 7 to 9 show the harmonic variation in both electron-gas and
solid-lattice temperatures for Cu at different frequencies. As seen from
Figs. 7 to 9 the deviation between he and hl becomes significant when
w > 1 × 10−5. Taking into account that most metals have yF ’ 10−14 s, then
w̄= w

yF
=109 s. This agrees very well with the predictions of the previous

theoretical analysis carried out using an order of magnitude analysis, and
summarized in Table I.

Fig. 6. Spatial and transient dimensionless heat flux dis-
tribution for Cu (A=0.06857, B=0.000551, w=0.001).
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Fig. 7. Transient electron-gas and solid-lattice temperature
distributions for Cu (A=0.06857, B=0.000551, w=0.00001,
z=1.0).
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Fig. 8. Transient electron-gas and solid-lattice temperature
distributions for Cu (A=0.06857, B=0.000551, w=0.0001,
z=1.0).
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Fig. 9. Transient electron-gas and solid-lattice tempera-
ture distributions for Cu (A=0.06857, B=0.000551, w=
0.001, z=1.0).

 ω

δ 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

/C
R
A

Fig. 10. Variation of the phase shift between the electron-
gas and solid-lattice temperature as a function of w.
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Fig. 11. Transient behavior of the temperature differ-
ences he − hl at different w for Cu (A=0.06857, B=
0.000551, z=1.0).

The phase shift d as described by Eq. (19) is plotted in Fig. 10 as a
function of w

CRA . An increase in w
CRA within its lower range leads to a sharp

increase in d. However, this increase becomes slower as w
CRA increases and

then d reaches to an asymptotic value of 1.5708 rad.
As mentioned previously, the group w

CRA represents w̄Cl
G on a dimensional

basis. It is clear that the phase shift becomes small as w̄ and Cl decrease
and as G increases. Any parameter that shortens the time required by the
lattice to exchange energy with the electron gas leads to a reduction |he − hl |
in the phase shift between the electron-gas and the solid-lattice tempera-
tures.

The deviation between electron-gas and solid-lattice temperatures as a
function of g is shown in Fig. 11 for Cu. The figure shows that the devia-
tion becomes significant for w̄ > 1 × 109 rad · s−1 and is in a good agreement
with the predictions of Table I.

4. CONCLUSION
The validity of using the microscopic hyperbolic heat conduction

model under the effect of a high frequency fluctuating boundary heating
source is investigated. It is found that the microscopic hyperbolic heat
conduction model must be used if w

CRA > 0.1 on a dimensionless basis or
w̄Cl

G > 0.1 on a dimensional basis. For w̄Cl
G < 0.1, the difference and the phase
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shift between he and hl may be neglected and one may assume that he % hl.
The phase shift between the electron-gas and the solid-lattice temperatures
is found to be tan−1( w

CRA). This phase shift reaches a fixed value of 1.5708
rad at very large values of w

CRA or w̄Cl
G . Regarding the frequency w̄, it is found

that the use of the microscopic hyperbolic heat conduction model is essen-
tial when w̄ > 1 × 109 rad · s−1 for most metallic films independent of the
layer thickness and other thermal properties such as yF, ke, and Ce.

NOMENCLATURE

A Dimensionless quantity, GyF/Ce

B Dimensionless quantity, keyF/(L2Ce)
C Heat capacity, J · m−3 · K−1

CR Heat capacity ratio, Ce/Cl

E(z) Spatial amplitude of the heat flux
G Electron-phonon coupling factor, W · m−3 · K−1

i Imaginary number, ` − 1
ke Electron gas thermal conductivity, W · m−3 · K−1

2L Film thickness, m
q Heat flux, W · m−2

Q Dimensionless heat flux, qyF/(LCeTo)
t Time, s
T Temperature, K
To Amplitude of harmonic fluctuating temperature, K
W(z) Spatial amplitude of the temperature
x Transverse coordinate, m

Greek Symbols

e Relative amplitude of oscillations
g Dimensionless time, t/yF

h Dimensionless temperature, (T − To/To)
yF Relaxation time evaluated at the Fermi surface, s
z Dimensionless axial coordinate, x/L
w̄ Angular velocity of fluctuating temperature, rad · s−1

w Dimensionless angular velocity of fluctuating temperature, w̄yF

Subscripts

e Electron gas
l Solid lattice
R Ratio
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